Rate this Page

Source code for helion.runtime

from __future__ import annotations

import contextvars
import os
from typing import TYPE_CHECKING

import torch

from .. import _compat as _compat  # ensure Triton compatibility patches run
from .config import Config as Config
from .kernel import Kernel as Kernel
from .kernel import kernel as kernel
from .triton_helpers import triton_send_signal as triton_send_signal
from .triton_helpers import triton_wait_multiple_signal as triton_wait_multiple_signal
from .triton_helpers import triton_wait_signal as triton_wait_signal

if TYPE_CHECKING:
    import triton


def _alloc_fn(size: int, alignment: int, stream: int | None) -> torch.Tensor:
    return torch.empty(size, device="cuda", dtype=torch.int8)


[docs] def set_triton_allocator() -> None: try: from triton import set_allocator from triton.runtime._allocation import NullAllocator from triton.runtime._allocation import _allocator except ImportError: return if isinstance(_allocator, contextvars.ContextVar): existing = _allocator.get() else: # older versions of Triton existing = _allocator # if allocator isn't NullAllocator, we assume it is set by the user if isinstance(existing, NullAllocator): set_allocator(_alloc_fn)
[docs] def get_num_sm(device: torch.device) -> int: """ Get the number of streaming multiprocessors (SMs) for the specified device. Args: device: Device to query. Returns: Grid size to use for a persistent kernel on the device. """ assert device.type in ["cuda", "xpu", "cpu"], "TODO: implement for other devices" if device.type == "cpu": try: num_threads = int(torch.get_num_threads()) except Exception: num_threads = 0 return num_threads if num_threads > 0 else int(os.cpu_count() or 1) if device.type == "cuda": return torch.cuda.get_device_properties(device.index).multi_processor_count # TODO(EikanWang): gpu_subslice_count is an out-of-date term. we change update it to XeCore number. return torch.xpu.get_device_properties(device.index).gpu_subslice_count
def default_launcher( triton_kernel: triton.JITFunction, grid: tuple[int, ...], *args: object, num_warps: int, num_stages: int, **kwargs: dict, ) -> object: """Default launcher function that executes the kernel immediately.""" return triton_kernel.run( *args, grid=grid, warmup=False, num_warps=num_warps, num_stages=num_stages, **kwargs, )